1) Resuelve las siguientes ecuaciones de segundo grado incompletas:
Desplegar EcuacionesContraerx^{2}=9 \Rightarrow x=\pm \sqrt{9}=\pm3
x^{2}=16 \Rightarrow x=\pm \sqrt{16}=\pm4
x^{2}=25 \Rightarrow x=\pm \sqrt{25}= \pm5
x^{2}=10 \Rightarrow x=\pm \sqrt{10}
x^{2}=12 \Rightarrow x=\pm \sqrt{12}= \pm 2 \sqrt{3}
x^{2}=20 \Rightarrow x=\pm \sqrt{20}= \pm 2 \sqrt{5}
4x^{2}=9 \Rightarrow x^{2}=\frac{9}{4} \\ \Rightarrow x= \pm \sqrt{\frac{9}{4}}=\pm \frac{3}{2}
25x^{2}=16 \Rightarrow x^{2}=\frac{16}{25} \\ \Rightarrow x=\pm \sqrt{\frac{16}{25}}=\pm \frac{4}{5}
9x^{2}=2 \Rightarrow x^{2}=\frac{2}{9} \\ \Rightarrow x=\pm \sqrt{\frac{2}{9}}=\pm \frac{\sqrt{2}}{3}
4x^{2}=10\Rightarrow x^{2}=\frac{10}{4}\\ \Rightarrow x=\pm\sqrt{\frac{5}{2}}
4x^{2}=-9\Rightarrow x^{2}=\frac{-9}{4}
2x^{2}=9\Rightarrow x^{2}=\frac{9}{2}\Rightarrow x=\pm\sqrt{\frac{9}{2}}=\pm\frac{3}{\sqrt{2}}


2) Resuelve las siguientes ecuaciones de segundo grado incompletas:
Desplegar EcuacionesContraer \begin{array}{ll}
x(x-10)=0 & \Rightarrow\left\{ \begin{array}{l}
x=0\\
x-10=0
\end{array}\right.\\
& \Rightarrow\left\{ \begin{array}{l}
x=0\\
x=10
\end{array}\right.
\end{array}
\begin{array}{ll}
4x(x-2)=0 & \Rightarrow\left\{ \begin{array}{l}
x=0\\
x-2=0
\end{array}\right.\\
& \Rightarrow\left\{ \begin{array}{l}
x=0\\
x=2
\end{array}\right.
\end{array}
\begin{array}{ll}
x(2x-5)=0 & \Rightarrow\left\{ \begin{array}{l}
x=0\\
2x-5=0
\end{array}\right.\\
& \Rightarrow\left\{ \begin{array}{l}
x=0\\
x=\frac{5}{2}
\end{array}\right.
\end{array}
3) Resuelve las siguientes ecuaciones de segundo grado
x=\frac{7 \pm \sqrt{7^{2}-4(1)(6)}}{2(1)} = \\ =\frac{7\pm \sqrt{49-24}}{2} = \\ =\frac{7\pm\sqrt{25}}{2}= \\ = \frac{7\pm5}{2} =\left\{ \begin{array}{l} x=6\\ x=1 \end{array}\right.
x=\frac{5\pm \sqrt{5^{2}-4(4)(1)}}{2(4)} =\frac{5\pm \sqrt{25-16}}{8} = \\ \qquad =\frac{5\pm \sqrt{9}}{8}=\frac{5\pm3}{8}=\left{ \begin{array}{l}\frac{5+3}{8}=1\frac{5-3}{8}=\frac{1}{4}end{array} \right.
x=\frac{-2\pm \sqrt{2^{2}-4(2)(3)}}{2(1)} =\frac{-2\pm \sqrt{4-24}}{2} = \\
\qquad =\frac{-2\pm \sqrt{-20}}{2}
No tiene solución (en los reales)