Caminando Entre las Matemáticas. Sus Grandes Misterios. (1)

Caminando Entre las Matemáticas. Sus Grandes Misterios. (1)

Hay un mundo secreto ahí fuera. Un universo oculto, paralelo, de belleza y elegancia, intrincadamente conectado con el nuestro. Es el mundo de las matemáticas. Y a la mayoría de nosotros nos resulta invisible.

Amor y Matemáticas. Edward Frenkel.

¿Qué son las Matemáticas?

La Enciclopedia Británica define:

Matemáticas:   la ciencia de las estructuras, el orden y las relaciones, que ha evolucionado a partir de prácticas elementales de contar, medir y describir las formas de los objetos.

Sin lugar a dudas, estos términos describen de manera bastante precisa lo que entendemos por matemáticas. Donde existan relaciones cuantitativas y/o espaciales, habrá matemáticas. Sin embargo, en las últimas cuatro décadas, ha ganado relevancia un enfoque que redefine nuestra concepción de esta disciplina:

considerar las matemáticas como “la ciencia de los patrones

una idea que cada vez más matemáticos adoptan para caracterizar su esencia.

Podemos coincidir en que nuestra concepción de las matemáticas ha evolucionado a medida que ha crecido nuestro conocimiento sobre ellas. Un punto de inflexión clave, y probablemente el más significativo, ocurrió hace aproximadamente 2700 años, cuando los filósofos griegos, como Tales de Mileto y Pitágoras de Samos, comenzaron a desarrollar la idea de demostración matemática. Este enfoque marcó un hito en la formalización del pensamiento matemático. <Véase, como ejemplo, algunas demostraciones del Teorema de Pitágoras >



En ese momento, como especie, abrimos una rendija que nos permitió mirar a otro mundo: ese mundo matemático platónico en el que creo. A través de esa apertura, comenzamos a desentrañar sus maravillosos secretos, los cuales constituyen lo que hoy conocemos como conocimiento matemático. Este conocimiento no solo ha transformado nuestra comprensión de la realidad, sino que también se establece como el pilar fundamental de la ciencia.

Las Matemáticas que descubrimos nosotros como especie son acorde a nuestra forma de  razonar, de pensar, de nuestra  lógica, de nuestra fisiología.

En este punto, es importante destacar que “las matemáticas” no son lo mismo que “el lenguaje matemático” que hemos creado para desarrollarlas, demostrar sus teoremas y transmitirlos. Las matemáticas consisten en verdades objetivas y “eternas“, mientras que el lenguaje matemático es una herramienta humana para acceder a ellas. Nuestras características como especie nos han permitido no solo reconocer teoremas, sino también demostrar que lo son. No tengo dudas de que otra civilización, igual o más avanzada que la nuestra, capaz de identificar las propiedades físicas de nuestro entorno, también conocerá el Teorema de Pitágoras.

La ciencia encuentra su fundamento en las matemáticas..

Una función clave de las matemáticas es la de ordenar, estructurar e inferir información a partir de los datos. En esta nueva era, que algunos denominan la “era de la información” – marcada por el big data, el machine learning etc – el papel de los matemáticos será incluso más importante en este proceso. Así como en el de facilitar la conversión de la información en realidad física a través de la acción humana. 

Podemos entender lo que es la ciencia a través de su objetivo principal: Descubrir las leyes que rigen los fenómenos de la realidad. Las leyes que tienen implicaciones en nuestro universo observable (evidentemente no solo por nuestros limitados sentidos). Por lo cual, con la ciencia podemos describir, explicar, comprender y predecir tales fenómenos.

Pero para descubrir estas leyes que rigen los fenómenos de la realidad debemos observar los patrones que las determinan. Se deben establecer conceptos y dar definiciones, así como establecer métricas que nos permitan medir y valorar esos conceptos y elementos definidos. Cuando se trata de elementos físicos casi siempre tenemos interés por su forma, ya que esta puede ser importante para describir esa realidad. Pero en fin, todo lo que subyace en este proceso es matemáticas. Más aun, esa ley que determina a ese fenómeno es “matemática” y casi siempre intentamos describirla con una “expresión matemática”.

¿Las matemáticas son la ciencia de los patrones?

En realidad, hemos trasladado el problema de definir que son las matemáticas al de que entendemos por patrones.

Por ejemplo: Los patrones son estructuras repetitivas o reconocibles en datos o fenómenos. Pueden manifestarse en diversas formas, como secuencias, formas geométricas, comportamientos, relaciones numéricas, entre otros. Pero para definir “patrones” estamos recurriendo a términos específicos utilizados para expresar “qué son las matemáticas”.

Las matemáticas muy a menudo se centra en la identificación, descripción y manipulación de patrones. Desde secuencias numéricas hasta estructuras geométricas y algebraicas, la idea de patrón subyace en muchos conceptos matemáticos fundamentales.

Por ello, al entender y descubrir patrones, básicamente estamos explorando la esencia misma de la actividad matemática.

La matemática implica abstracción y generalización, identificar regularidades y patrones para formular principios universales. El énfasis en patrones resalta cómo las matemáticas a menudo se descubren sobre la capacidad de la mente para reconocer y entender esas regularidades en diversos contextos.

Euclides en el siglo III a.c, en su libro los elementos, intenta definir que es un “punto” o una “recta”:

I : El punto es aquello que no “tiene partes” o “extensión”.
II 
La línea es longitud sin ancho.

Pero en esta definición utiliza conceptos que a su vez deberían haber sido definidos: «longitud», «ancho», «extensión». Euclides traslado el problema de definir unos objetos a otros conceptos. Puedes seguir leyendo sobre esto aquí.  

Nuestra capacidad para describir algo está intrínsecamente vinculada a nuestras experiencias y percepciones sensoriales. Si algo existe fuera de nuestro rango de percepción o experiencia directa, puede ser difícil o incluso imposible describirlo de manera precisa

¿Existe el mundo platónico de las matemáticas?

Esta y otras preguntas como:

¿Las matemáticas son una idealización del mundo real o el mundo real es un reflejo imperfecto de las matemáticas?

las abordaremos a lo largo de esta serie. Pero casi nunca podremos dar una respuesta cerrada a cada una de ellas. Por ello el lector deberá construir sus propias respuestas.

“Creo que la realidad matemática está fuera de nosotros, que nuestra función es descubrirla u observarla, y que los teoremas que demostramos, y que describimos grandilocuentemente como nuestras “creaciones”, son simplemente las notas de nuestras observaciones.

Godfrey Harold (G.H.) Hardy

Seguiremos en la próxima entrega de esta serie.

Subscribe
Notify of
guest
3 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
trackback

[…] desde el antiguo Egipto y Babilonia sapiens tenia constancia de muchas verdades matemáticas (leer la serie: «Caminando entre las Matemáticas»). Pero un importante punto de inflexión tuvo lugar con los filósofos Tales de Mileto (625-547 […]

trackback

[…] «Caminando entre las Matemáticas« […]

trackback

[…] la serie de entradas “Caminando Entre las Matemáticas…” enfatizamos como ha evolucionado nuestros conocimiento sobre las matemáticas. En […]